Analysis of the Neuronal Selectivity Underlying Low fMRI Signals

نویسندگان

  • Galia Avidan
  • Uri Hasson
  • Talma Hendler
  • Ehud Zohary
  • Rafael Malach
چکیده

BACKGROUND A prevailing assumption in neuroimaging studies is that relatively low fMRI signals are due to weak neuronal activation, and, therefore, they are commonly ignored. However, lower fMRI signals may also result from intense activation by highly selective, albeit small, subsets of neurons in the imaged voxel. We report on an approach that could form a basis for resolving this ambiguity imposed by the low (mm range) spatial resolution of fMRI. Our approach employs fMR-adaptation as an indicator for highly active neuronal populations even when the measured fMRI signal is low. RESULTS In this study, we first showed that fMRI-adaptation is diminished when overall neuronal activity is lowered substantially by reducing image contrast. We then applied the same adaptation paradigm, but this time we lowered the fMRI signal by changing object shape. While the overall fMRI signal in category-related regions such as the face-related pFs was drastically reduced for non-face stimuli, the adaptation level obtained for these stimuli remained high. We hypothesize that the relatively greater adaptation level following exposure to "nonoptimal" object shapes is indicative of small subsets of neurons responding vigorously to these "nonoptimal" objects even when the overall fMRI activity is low. CONCLUSIONS Our results show that fMR-adaptation can be used to differentiate between neuronal activation patterns that appear similar in the overall fMRI signal. The results suggest that it may be possible to employ fMR-adaptation to reveal functionally heterogeneous islands of activity, which are too small to image using conventional imaging methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Large-scale, high-resolution neurophysiological maps underlying FMRI of macaque temporal lobe.

Maps obtained by functional magnetic resonance imaging (fMRI) are thought to reflect the underlying spatial layout of neural activity. However, previous studies have not been able to directly compare fMRI maps to high-resolution neurophysiological maps, particularly in higher level visual areas. Here, we used a novel stereo microfocal x-ray system to localize thousands of neural recordings acro...

متن کامل

Neuronal correlates of spontaneous fluctuations in fMRI signals in monkey visual cortex: Implications for functional connectivity at rest.

Recent studies have demonstrated large amplitude spontaneous fluctuations in functional-MRI (fMRI) signals in humans in the resting state. Importantly, these spontaneous fluctuations in blood-oxygenation-level-dependent (BOLD) signal are often synchronized over distant parts of the brain, a phenomenon termed functional-connectivity. Functional-connectivity is widely assumed to reflect interregi...

متن کامل

Individual Differences in Cognitive Function in Older Adults Predicted by Neuronal Selectivity at Corresponding Brain Regions

Relating individual differences in cognitive abilities to neural substrates in older adults is of significant scientific and clinical interest, but remains a major challenge. Previous functional magnetic resonance imaging (fMRI) studies of cognitive aging have mainly focused on the amplitude of fMRI response, which does not measure neuronal selectivity and has led to some conflicting findings. ...

متن کامل

Bayesian Comparison of Neurovascular Coupling Models Using EEG-fMRI

Functional magnetic resonance imaging (fMRI), with blood oxygenation level-dependent (BOLD) contrast, is a widely used technique for studying the human brain. However, it is an indirect measure of underlying neuronal activity and the processes that link this activity to BOLD signals are still a topic of much debate. In order to relate findings from fMRI research to other measures of neuronal ac...

متن کامل

Tuning to sound frequency in auditory field potentials.

Neurons in auditory cortex are selective for the frequency content of acoustical stimuli. Classically, this response selectivity is studied at the single-neuron level. However, current research often employs functional imaging techniques to investigate the organization of auditory cortex. The signals underlying the imaging data arise from neural mass action and reflect the properties of populat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Current Biology

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2002